Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods
نویسندگان
چکیده
منابع مشابه
Nonsmooth optimization via quasi-Newton methods
We investigate the behavior of quasi-Newton algorithms applied to minimize a nonsmooth function f , not necessarily convex. We introduce an inexact line search that generates a sequence of nested intervals containing a set of points of nonzero measure that satisfy the Armijo and Wolfe conditions if f is absolutely continuous along the line. Furthermore, the line search is guaranteed to terminat...
متن کاملRandomized Derivative-Free Optimization of Noisy Convex Functions∗
We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing stepsizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS ...
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملDerivative-Free Optimization Via Proximal Point Methods
Derivative-Free Optimization (DFO) examines the challenge of minimizing (or maximizing) a function without explicit use of derivative information. Many standard techniques in DFO are based on using model functions to approximate the objective function, and then applying classic optimization methods on the model function. For example, the details behind adapting steepest descent, conjugate gradi...
متن کاملNoisy Derivative-free Optimization with Value Suppression
Derivative-free optimization has shown advantage in solving sophisticated problems such as policy search, when the environment is noise-free. Many real-world environments are noisy, where solution evaluations are inaccurate due to the noise. Noisy evaluation can badly injure derivative-free optimization, as it may make a worse solution looks better. Sampling is a straightforward way to reduce n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2019
ISSN: 1052-6234,1095-7189
DOI: 10.1137/18m1177718